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Temporal Post-Processing in
Time-Resolved MR Angiography

Oliver Wieben, Damon Tull

Abstract— This article discusses temporal post-processing
strategies to differentiate arterial and venous signal
in contrast-enhanced Magnetic Resonance Angiography
(MRA). Algorithms were implemented which derive global
and local Eigenimages for the suppression of signals from
the arteries or the veins. In addition, a regularization pro-
cedure is proposed, which smoothes the signal waveforms in
the spatial and time dimension. These denoised signals may
be used for the segmentation of 4D angiographic data sets
in classes such as “artery”, “vein”, and “others”.
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I. INTRODUCTION

HE Vascular Magnetic Resonance Research Group at

the University of Wisconsin—-Madison recently devel-
oped a novel MR angiographic technique, referred to as
3D MR DSA (Three-Dimensional Magnetic Resonance
Digital Subtraction Angiography) [1], [2].

Compared to all other angiographic approaches,
3D MR DSA is unique in its ability to acquire a series
of time-resolved volume images and, therefore, allowing
the passage of an injected MR contrast agent to be ob-
served. Time-resolved imaging circumvents problems with
synchronizing the timing of the bolus and data acquisition
and may potentially increases the diagnostic information
obtained in the examination. The reconstructed data vol-
umes for 3D MR DSA vary, but a typical exam will have
20 to 32 volumes with a resolution of 512 x 256 x 32.

For diagnostic purposes, radiologists are interested in the
analysis of the arteries and veins. Therefore, it is desirable
to obtain an image with maximum contrast for the signal
from the arteries without interference with the signal from
veins and vice versa. Typically, 2D projections (so called
maximum-intensity—projection (MIP) images as shown in
Figure 1) are calculated an displayed, so that the operator
or radiologists can choose the time frame of highest diag-
nostic value. Then, MIP images from different angles are
calculated and displayed to reflect the 3D information of
the data.

The purpose of this study is the investigation of improve-
ments for 3D MR DSA in terms of separating arterial and
venous signals. In the current implementation, oftenly only
2-3 time frames are used, because they do contain the peak
arterial signal. Potentially, the signal-to-noise ratio (SNR)
can be improved by incorporating information from all time
frames into two final image volumes (arterial only and ve-
nous only [3].
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One approach for the separation of the signals is matched
filtering. With this approach a signal waveform can be
suppressed by properly adjusting weight parameters over
the time dimension.

A second approach is based on the segmentation of each
voxel. The voxels are categorized as belonging to either an
artery, or a vein, or none of the above. Such a segmentation
needs “features” which identify the voxels. Such features
can be extracted from the signal waveform over time. Since
the signal is corrupted with noise, it is desirable to smooth
the waveforms to allow for a better feature extraction. In
our regularization approach, we denoiser the signal by fil-
tering spatially and over time.

II. THEORY
A. Matched Filtering

Matched filtering is one approach to extract specific sig-
nals from a set of images. Wang et al. [4] investigated
generalized matched filtering to extract (1) signal of the
arterial flow and (2) signal of venous flow in time-resolved
2D flow angiography. In this approach, the high tempo-
ral resolution of the acquired data allows to differentiate
the two signals by the characteristic pulsatility of the ar-
terial blood flow. Filtered images are then generated by a
weighted sum of all images in the cardiac cycle. The result
were two images: one with optimal SNR, for identification
of arteries and one for identification of veins.

Wang used human interaction to define regions contain-
ing arterial and venous blood. Based on the analysis of
these data, coeflicients for the weighting coefficients of each
pixel wg(z,y) in the acquired images sy (x,y) can be deter-
mined, so that the resulting image I(x,y) can be calculated

as
K

k=1
In this notation, k£ denotes the time frame number (total
number of time frames is K). An undesired signal wave-
form {fr} can be can be suppressed in the filtered image
I(x,y) by adjusting the weighting coefficients so that

K
> wifr =0. (2)
k=1

The undesired waveform could be the venous waveform
{vg }(for an arterial only image) or the arterial waveform
{ar} (for a venous only image).

The weighting coefficients are calculated with the La-
grange multiplier method to (a) eliminate signal corre-
sponding to the undesired waveform and (b) maximize the
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Fig. 1. 3D MR DSA maximum-intensity—projection images for a
time series of images obtained from the neck. The series shows
sagittal projections at discrete time intervals 8 (a), 10 (b), 12 (c),
and 14 (d) during the passage of a contrast agent. The contrast
agent has not arrived at time frame 8, but time frame 10 shows
a high signal for the carotid artery (A). Image (c) shows the
delayed signal enhancement of the jugular vein (B). The length
of one time intervals is 5.6 s.

SNR. The Lagrangian multiplier A is used to construct the
Lagrangian
K
L=SNR =\ wpfi. (3)

k=1

The task becomes the maximization of L by adjusting wy,
while also adjusting A so that the suppression condition is
kept. Therefore, the first derivative of L has to be zero

oL _, oL

=0, —=0. 4
8wk ’ oA ( )
In these equations, szLk = 0 is the condition for maximal

SNR and ‘g—i = 0 is the condition for signal suppression.
These equations are then solved for different criteria—such
as suppression conditions and maximization criteria.

The image obtained by the matched filter solution de-
pends on the suppression condition and the maximization
procedure. A global Eigenimage which optimize the signal
for the waveform { fopt,r } is derived by suppressing the sig-
nal waveform { fsup, &} by means of a global matched filter.
The filter coeflicients are

Wk = fopt,k — (f0pt : fsup)fsup,k: (5)
where
K
fopt . fsup= Z fopt,k : fsup,k- (6)
k=1

For a local Eigenimage, the filter coefficients vary for the
pixels

Wg = Sk — (S : fsup)fsup,k- (7)

B. Signal Waveforms

An alternative approach to differentiate venous signal
from arterial signal is by segmentation of the data set. For
this segmentation, each voxel is assigned to one of the three
classes “artery”, “vein”, or “background”. Features for the
segmentation can be derived from the characteristics of the
signal intensity over time for the individual voxels.

In 3D MR DSA, the signatures of the waveforms are not
as distinct as for pulsatile blood flow. Figure 2 shows the
signal intensities of the carotid artery and jugular vein as
obtained from a fast 2D timing scan (2-6 x higher tempo-
ral resolution as compared to 3D MR DSA). Both signal
waveforms can be described as gamma-variant functions

s(t) = sotPel "t/ (8)

where t® describes a function with a high positive slope
and e(~*/%) damps the function. The time at which S(t)

peaks (%(tt) = 0)isatt = T, = §. Another char-
acteristic parameter is defined as the mean transit time
T J s(t)tat _ bt
T syt a -

C. Deterministic Regularization

The signal for individual voxels is corrupted by noise and
not as smooth as shown for the averaged signals in Figure 2.
In order to extract suitable features from the waveforms,
the data have to be denoised.

Regularized restoration has been widely applied to re-
store and smooth 2D images [5], [6], [7]. For deterministic
regularization prior information about the image is incor-
porated in the restoration procedure. The problem is for-
mulated as to minimize the Lagrangian

min[|lg — H3[| +o || C3]]], 9)

where 3(z,y) denotes the desired estimation of the original
(unknown) signal s(z,y), g(x,y) the degraded image, H
the distortion matrix, and C' a high-pass filter. The high
pass filter represents a smoothness constraint for the re-
duction of high frequency noise. The degree of smoothness
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Fig. 2. Plot of the signal enhancement in the carotid artery and

jugular vein as a function of time. The data are obtained from
averaging signal intensities in a region of interest (ROI) during
a 2D timing scan with a temporal resolution of one second. The
signal in the carotid artery is characterized by an earlier peak and
a faster rising time. The shape of the waveforms can be described
by gamma-variant curves and their integral over time is identical.

in the restored image is influenced by the Lagrange multi-
plier a which is also referred to as regularization parameter.
Equation (9) can be solved as
§=(HTH+aCTC)'Hy. (10)

Hunt [5] showed that this restoration can be implemented
very efficiently in the frequency domain.

A regularization algorithm can also be applied in one
dimension (the time dimension in our case) as

min(l| gi(z,y) — Hgi(z,y)[| +A | Cgi(z,p) . (11)

D. Segmentation

Once these estimations are obtained, features such as the
peak signal, the peak time, and the peak transit time can
be determined. These features can be used for segmenta-
tion purposes, which again could help for advanced post—
processing (e.g. automatic calculation of vessel-lumen) or
visualization methods (e.g. volume rendering or virtual
endoscopy). Potential problems for the differentiation be-
tween these tissues are the noise in the data and uneven
delay times for the filling of the vessels in the image. This
may be due to large field of views covered for data acquisi-
tion or due to pathologies. However, such a segmentation
will not be part of this project but is potential future work.

E. SNR
The signal=to=noise ratio (SNR) is defined in MR imag-
ing as

SNR = >,
ON

(12)

where s denotes the signal amplitude and ox the standart
deviation of the noise [8]. This definition of the SNR is

different from the notation typically used in the signal pro-
cessing area. The SNR is measured in decibel (dB):

SNRdB =20- log(SNR). (13)

IIT. METHODS AND RESULTS
A. Matched Filtering

A 3D MR DSA examination of the carotid artery was
used for the calculation of the Eigenimages. The complete
4D data set was normalized to grayscale intensities from 0
to 1. ROIs (= 500 voxels)) were interactively selected in
a slice for an artery and a vein. The waveforms {a;} and
{vr} were obtained by averaging the signals in the ROIs
from this slice at each time frame. The waveforms were
then normalized to Y r, f2 = 1.

(a) (b)

Fig. 3. Global (a) and local (b) arterial Eigenimage of a slice from a
3D MR DSA examination of the carotid artery.

(2) (b)

Fig. 4. Global (a) and local (b) venous Eigenimage of one slice from
a 3D MR DSA examination of the carotid artery.

The global arterial and venous Eigenimages were calcu-
lated as described by equations (1), (5), and (7)). Figure 3
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shows the global and local arterial Eigenimage obtained for
one slice of the data set. The global and local Eigenimages
for optimized venous signal are shown in Figure 4. Gray
values outside the range [0 1] have been bounded to stay
within the range [0 1].

These Eigenimages have been calculated for each of the
32 slices. 3D image volumes are typically displayed as
maximum-intensity-projection images in MR. Such MIP
images are shown for sets of global arterial and venous
Eigenimages in Figure 5. Each image represents the infor-
mation from 512 x 256 x 32 x 27 voxels.

(2) (b)

Fig. 5. Maximum-intensity-projection image from the global arterial
Eigenimage (a) and the global venous Eigenimage.

The SNR of the MIP Eigenimages was compared to the
SNR of a MIP image for one time frame. Time frame
10 from Figure 1 had the highest signal for the arteries
with small interference from the veins. Both images were
normalized to an interval [0 1]. The mean signal for a large
ROI was found to be 0.735 and the standard deviation for a
large ROl in the air (outside the head and neck) was 0.0165.
This corresponds to an SNR of 75.9 dB. The global arterial
Eigenimage had an SNR of 78.1 dB (mean signal = 0.732
and on = 0.0147) for the same ROIs. The experiment was
repeated for the MIP venous Eigenimage and time frame
15. In this case the SNR improved from 72.9 dB to 76.7
dB.

B. Regularized Filtering

The smoothing of the data was implemented in two steps.
First information about their 2D neighborhood was incor-
porated and than the data were smoothed as a function of
time.

The spatial filtering was implemented according to equa-
tion (10). In our case the point spread function h(z,y) was
the unit impulse function and, therefore, the Fourier trans-
form H contained a value of 1 in each element. A 2D

4
Laplacian operator was used for the high pass filter
0 1 0
c=1]1 -4 1 (14)
0 1 0

The regularization parameter was varied and a value of
a = 107! proved to work well. For a larger a the signal
in the vessels becomes more homogeneous but on the other
hand the edges get more blurred. Following the spatial
filtering, the voxels are filtered as a function of time (see
equation (11)). Again, a first order high pass filter was
chosen for C' ([1 —2 1]) and « was set to 10~ 1.

Figure 6 shows signal intensities from representative vox-
els for an artery, vein, and other tissue. These voxels have
been selected interactively and were then analyzed.
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Fig. 6. Signal intensities of selected voxels as a function of the
time frame k. Image (a) shows the acquired data (x) and the
data obtained after the regularized filtering (0). The solid line
represents a voxel from an artery, the dash-dotted line a voxel
from a vein and the dotted line a voxel from other tissue. Image
(b) shows the data after an additional smoothing constraint has
been applied in the time dimension.

IV. DISCUSSION

The matched filter algorithm allows for the generation of
an arterial only and a venous only image. In the illustrated
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data set, the obtained angiogram looks similar to the best
image from the time series. The SNR increased slightly for
the arterial and venous Eigenimages, but the signal from
stationary tissues increased as well.

It is also possible to suppress constant signal in the im-
ages with a matched filter. This option would remove sta-
tionary signal, for example from fat. Typically, stationary
signals are removed by the subtraction of a precontrast
mask [9]. Potentially, a matched filter may perform better
than the mask mode subtraction algorithm.

For the first time, images containing signal from veins
only have been produced by the matched filter algorithms.
Such images have not been available previously due to the
interference with the signal from arteries.

The temporal filtering had by far a bigger impact on
smoothing the waveform than the spatial filtering. The 2D
high pass filter could have been modified to smooth over
more data, but averaging over more data points would have
blurred the edges more as well. After applying both regu-
larized filters, the waveform seems to have a more suitable
shape for segmentation purposes. Possible features include
the ratio of the maximum amplitude over the mean ampli-
tude, the delay of the maximum amplitude and the width
of the peak.

A possible extension of the method would be a 3D spatial
filtering and a temporal filtering. This approach may not
add too much value though, because the spatial filtering in
2D did not seem to change the waveform of the data very
much.

The segmentation itself remains a future task too. Var-
ious approaches for segmentations have been proposed in
the literature, for example statistical approaches, neural
networks, fuzzy logic systems etc.
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