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AbstractThe classification of heart beats is important for automated arrhythmia

monitoring devices. This study describes two different classifiers for the identification of

premature ventricular contractions (PVCs) in surface ECGs. A decision tree algorithm

based on inductive learning from a training set and a fuzzy-rule-based classifier are

explained in detail. Traditional features for the classification task are extracted by

analyzing the heart rate and morphology of the heart beats from a single lead. In

addition, a novel set of features based on the use of a filter bank is presented. Filter

banks allow for time-frequency dependent signal processing with low computational

effort. The performance of the classifiers is evaluated on the MIT-BIH Database

following the AAMI recommendations. The decision tree algorithm had a gross

sensitivity of 85.29% and a positive predictivity of 85.23%, while the gross sensitivity of

the fuzzy-rule-based system was 81.34% and the positive predictivity 80.64%.

KeywordsBeat classification, ECG analysis, Fuzzy logic, Filter bank, Time-frequency

analysis
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1 Introduction

THE correct classification of heart beats is fundamental to ECG monitoring systems such as in

intensive care, automated analysis of long-term recordings, arrhythmia monitors, and cardiac

defibrillators. Counting the occurrence of ectopic beats is of particular interest to support the

detection of ventricular tachycardia and to evaluate the regularity of the depolarization of the

ventricles. For example, the risk of sudden death for patients with a structural heart disease is

higher with an increased occurrence of premature ventricular contractions (PVCs) (HAMDAN and

SCHEINMAN, 1995).

Variability in morphology and heart rate from patient to patient and even for the same patient,

noise present in the signal, or other arrhythmias make correct classification of PVCs a

challenging task, and reported results leave room for improvement. Different classification

approaches based on features such as heart rate, shape and correlation with templates are

proposed in the literature for classification of surface electrocardiograms (ECGs) (WANG, 1983;

RAPPAPORT et al., 1982; DASSEN et al., 1995; CHOW et al., 1992; HU et al., 1994; SILIPO et al.,

1995; JENKINS and CASWELL, 1996).

An evaluation of the performance of algorithms reviewed in the literature is difficult because

the authors use different databases or their own data sets and different learning strategies for their

algorithms. The Association for the Advancement of Medical Instrumentation (AAMI)

recommends standards for the development of classifiers based on a training set and beat-by-beat

testing of the performance of arrhythmia monitoring algorithms to avoid such confusion (AAMI,

1998). Moody and Mark (1982) report a gross PVC sensitivity of 95.31% and a positive
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predictivity of 90.65% for an algorithm which uses seven features from both channels in the

MIT-BIH Arrhythmia Database (MIT-BIH, 1988).

The purpose of this study is to introduce a new set of features based on a filter bank concept

and to compare two methods for beat classification. Afonso et al. (1996; 1997; 1999) introduced

the use of a filter bank to address different issues of monitoring systems, such as signal

enhancement and beat detection. This approach offers the possibility of processing the original

signal in subbands representing different frequency ranges in the signal.

The two classifiers, a decision tree and a fuzzy-rule-based system, differ widely in their

implementation and representation of knowledge. The induction of a decision tree (QUINLAN,

1986) is a self-learning algorithm, which analyzes a classified training set to develop a successful

strategy. On the other hand, the fuzzy logic approach is a rule-based system, which takes

advantage of knowledge implemented by a human expert. Fuzzy logic allows the use of linguistic

variables to formulate rules, which are intuitively plausible. It also avoids fixed thresholds or

distance measures and therefore accounts for noise and uncertainties in measured data. The

principles of neural networks and fuzzy logic can be combined for classification of ECGs (HAM

and HAN, 1996).

2 Data Selection and Feature Extraction

2.1 Data selection

The ECG records from long-term Holter recorders analyzed in this study are from the MIT-

BIH Database, which contains 48 records. The upper channel, a modified limb lead II (MLII) in

47 records, was chosen, because normal QRS complexes usually have a large R wave in this

lead.
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The AAMI standard recommends the exclusion of records with paced beats (4 records) from

the performance evaluation of beat-by-beat testing of arrhythmia monitoring algorithms.

Premature ventricular contractions and ventricular escape beats are grouped in the class P of

positive instances. An annotated normal beat, left and right bundle branch block beat, atrial

premature and aberrated atrial premature beat, nodal (junctional) premature beat, supraventricular

premature beat, or an atrial or nodal (junctional) escape beat are referred to as a ‘non-PVC’ or

negative instance, belonging to the class N.

2.2 Preprocessing of the data

The annotations in the database for the locations of R waves are used as ideal beat detectors.

For our study an algorithm searched for the local maximum or minimum peak near the beat label

to establish fiducial points instead of using the annotated locations which are based on an

integrative centroid measurement.

Characteristic variables in the ECGs such as the current heart rate or the magnitude of the R

wave for the same beat type may vary significantly from patient to patient or even for the same

patient. A normalization process must be used to provide the classifier with comparable features.

The choice of the normalization process is crucial because it has a great impact on the results of

the classifier (RAPPAPORT et al., 1982). We chose to establish a reference buffer for each variable

by averaging the measurement for the first eight beats of each record and continuously updating

this buffer with incoming ‘normal’  beats. A feature of a beat is considered to represent a ‘normal’

value whenever an incoming measurement lies within ±15% of the mean of the buffer or ±15%

of the last measurement added to the buffer. The complete buffer for a feature is overwritten if

the measurements of eight consecutive beats lie within ±15%  of their mean.
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2.3 Heart rate features

Three features related to the heart rate are extracted from the ECG recordings using the

corrected peak locations: 1) the normalized R-R interval norm-RR0 between the preceding and

the current R wave, 2) the ratio RR1-to-RR0 obtained by dividing the R-R interval RR1 between

the current and the following R wave by the previous R-R interval RR0, and 3) the irregularity of

the heart rate, which is defined as the standard deviation over the mean (RIPLEY et al., 1989).

2.4 Morphological features

Four morphological features were chosen to represent information about the shape of the QRS

complexes: 1) normalized amplitude, 2) peak-direction, and 3) width of the largest local

minimum or maximum nearest the annotation (derived by a 15% threshold between baseline and

peak), and 4) the normalized peak-to-peak distance within the QRS complex.

2.5 Features extracted from a filter bank

Filter banks allow for the separation of a signal x(n) into M different subbands, each

representing the signal content in a certain frequency range (SOMAN et al., 1993). The

implemented filters were developed by the lapped orthogonal transform (LOT) (MALVAR, 1992).

The filter bank contains M = 32 filters with equal bandwidths and each of a length L = 2·M = 64.

Due to the frequency range of the digitized signal from 0 to 180 Hz, the bandwidth of every

subband is 180 Hz / 32 = 5.625 Hz. The sampling frequency of each downsampled subband is

360 Hz/M = 11.25 Hz.

The analysis filter of the first subband (subband 0) is a low-pass filter with a cutoff frequency

at 5.625 Hz. The next 30 subband filters are bandpass filters, and the filter of the last subband
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(subband 31) is a high-pass filter with a cutoff frequency at 174.375 Hz (see Figure 1). The even

subbands have symmetric analysis and synthesis filters, and the uneven subbands have

antisymmetric filters. All filters have linear phase to allow independent analysis in the subbands

with the same delay for fiducial points. The filters are orthogonal to ensure that the energy of the

signal is preserved in each subband. All filters have a finite impulse response, and the attenuation

of the highest sidelobes is greater than -20 dB (AFONSO et al., 1996).

The idea behind the use of different subbands is to recognize the PVCs by their energy

distribution over the frequency range. Intuitively, the wider shape of the PVCs compared to

normal beats with sharper peaks, leads to the assumption that the low-frequency energy is greater

than the high-frequency energy. Thakor et al. (THAKOR et al., 1984) present a power spectral

analysis of ECG waveforms, in which the relative power spectrum of the QRS complex has a

high amplitude between 5-25 Hz. Clayton et al. (CLAYTON et al., 1995) evaluated the frequency

spectrum of ventricular tachycardia and ventricular fibrillation with a Fast Fourier Transform

(FFT) using consecutive one second epochs. They conclude that differences in the frequency

spectrum, such as the mean dominant frequency and the width and proportional size of the peak

in the spectrum, allow differentiation of different ventricular arrhythmias.

The time interval between two samples in the downsampled subbands is only 88.89 ms. This

leaves a representation of a normal QRS complex (80 ms) by two samples, which is insufficient

for a detailed analysis of the shape of the waveform. Therefore, all seven features using the filter

bank are extracted from upsampled subbands. Let the energy ek(n) of a subband k be represented

by the squared amplitude ok(n) in the subband (see Figure 1):

e n o nk k( ) ( )= 2 .
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The mean value of the amplitude during the previous second was subtracted from the amplitude

in subband 0 to account for the dc component. We implemented a moving window integrator

(MWI), which adds up the squared amplitudes over a rectangular window with a length of 122

ms. The maximum energy Ek in a subband is then represented by the peak in the output of the

MWI within ±35 samples of the annotated beat location. The maximum energy Ex,x+1 in

adjacent subbands was determined by the same procedure after summing up the two outputs

ok(n) and ok+1(n). The feature set consists of 5 ratios of maximum energies in different adjacent

subbands and 2 different widths of the MWI for the energy of the lowest subbands E0,1. Two

parameters MWI-15 and MWI-30 represent the time that the actual energy is above 15% or 30%

of the maximum energy. The energy ratios are calculated with respect to the energy E0,1, which

represents the sum of the energy of the signal in subbands 0 and 1 corresponding to a frequency

range from 0 to 12.25 Hz. The five ratios are E2,3/E0,1, E4,5/E0,1, E6,7/E0,1, E8,9/E0,1, and a

weighted ratio E0,1/E07 of most of these energies combined:

E

E
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E E E E
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01 2 4 5 6 72 10 100
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, ,3 , ,
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where E07 is the weighted sum of the energies in all subbands from 0 through 7. The weighting

factors were found empirically to compensate for differences in signal amplitudes in the

subbands. The denominator includes E0,1 to bound the ratio to values between 0 and 1.
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3 Classification Methods

3.1 Classification with induction of decision trees

Induction means to extract knowledge about the behavior of features in a set of given

examples which are related to different classes and to apply this knowledge to unseen instances.

A decision tree provides a kind of representation of acquired knowledge. Decision trees are fairly

robust, capable of dealing with noisy data, and result in a simple classifier with easily interpreted

decision rules (QUINLAN, 1986).

A decision tree is characterized by nodes and leaves as shown in Figure 2. A node represents a

test being performed on a feature and contains branches for the possible outcomes. The branches

lead to another node or a leaf, which determines the affiliation to a class. The classification

process starts in the node at the roof of the tree, performs tests in successive nodes and takes the

appropriate branches until categorization to a class in a leaf. The number of branches that

separate the root from the most distant leaf determines the level of the decision tree.  We used the

decision tree algorithm MC4 from the MLC++  library (KOHAVI et al., 1995).

The stages in creating the final decision tree include the construction of an initial tree and a

subsequent pruning of the branches to simplify decision rules which overfit the data. The criteria

to derive the initial decision tree are based on an analysis adopted from information theory. The

decision tree is generated by placing the feature with the highest gain ratio at the root of the tree.

Each subset or branch induces a new decision tree evaluated by the same criterion. The general

principle of inductive learning, often called Ockham’s razor, is that “The most likely hypothesis

is the simplest one that is consistent with all observations.”  Thus, the search for the perfect

decision tree is determined either when all examples in the training set are correctly classified,
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when more branches do not increase the accuracy of the algorithm on the training set, or when

the complexity of the tree exceeds certain thresholds.

Two independent procedures help to prevent a loss of generalization: finding criteria to stop

the growing process of the tree and pruning of the derived tree. The algorithm can be adjusted by

limiting the number of levels in the tree and determining a minimum amount of instances min

instances, that must trickle down at least two branches of a node. This amount is derived for each

node over a weighting factor split weight, which represents the percentage of instances divided

by the number of classes. If the number of instances present in a node is either very high or very

low, the calculated min instances may not be adequate. To avoid this problem, min instances is

bounded on both sides. The subsequent automatic pruning of the decision tree involves the

removal of branches, which do not contribute significantly to the performance, for the sake of

less complex results.

3.2 Classification with a fuzzy logic system

Zadeh (1965) introduced the theory of fuzzy sets, where the membership of objects to classes

is a matter of degree. This is an extension of the conventional crisp set theory, where partial

memberships are not possible. A Fuzzy Logic System (FLS) maps crisp inputs, such as a feature

vector, nonlinearly into crisp outputs. Fuzzy logic allows for implementation of rules by an

expert using linguistic variables. The advantages of a FLS are that it is robust and cost-effective

in the implementation of existing knowledge. Figure 3 shows its four components: fuzzification,

rules, inference engine, and defuzzification (MENDEL, 1995).

The process of fuzzification is a form of quantization, where crisp numbers are mapped into

fuzzy sets. The degree of membership of an input feature to fuzzy set is evaluated by the
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membership functions of the fuzzy sets. Fuzzy sets are defined within the range of the feature

(universe of discourse) and associate a degree of similarity between the value of the feature and

the fuzzy subset.

Rules in a FLS have the form of IF-THEN statements:

IF  THEN antecedent consequent ,

where the antecedent represents a fuzzy set or relations between fuzzy sets and the consequent

assigns a fuzzy set to the ouput. Rules are embedded using linguistic variables and map fuzzy

sets into fuzzy sets. As they are all evaluated in parallel, the order of rules is unimportant.

The inference engine determines the degree of activation of each rule based on the values of

the antecedents. It also combines the usually equally weighted rules which may have coincidental

or contradictory consequents. The results derived in this stage are fuzzy ouput sets, which are not

the desired outputs of the system.

The defuzzifier transforms the fuzzy sets into crisp numbers, because the desired output of a

fuzzy system is a scalar. Popular defuzzification methods are the centroid of area method, mean

of maximum method, and largest and smallest of maximum method.

The classifier was implemented using the Fuzzy Logic Toolbox for use with MATLAB

(GULLEY and JANG, 1995). All membership functions associated with the features were

implemented as generalized bell curve functions because of their smoothness and adaptability in

width and steepness:

f x
x c

a

b( ) =
+ −

1

1
2 .
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Table 1 summarizes the fuzzy input sets and their parameters. A total of nine features was chosen

to reduce the complexity of the system. Only two filter bank features (MWI-15 and E0,1/E07)

were selected because their characteristics were similar to MWI-30 and the other energy ratios

and, therefore, they would have been redundant. The parameters of the membership functions

were initially derived with a fuzzy c-mean clustering algorithm (BEZDEK, 1981). We then

improved the performance by fine-tuning the membership functions with scatter plots from the

training set (WIEBEN et al., 1997).

A total of 15 rules (e.g. IF norm-RR0 is premature and RR1-toRR0 is long THEN beat type is

PVC) was implemented based on expert knowledge and cluster plots. The fuzzy output beat type

is defined on a universe of discourse from 0 to 1. Two triangular waveforms, namely non-PVC

and PVC, with a width of 0.5 are centered at 0.25 (non-PVC) and 0.75 (PVC). The intersection of

fuzzy sets is implemented as the minimum operator and the union as the maximum operator. The

contribution of all rules is accounted for by the sum of each rule’s output set. The defuzzification

reduces the degree of membership to the sets non-PVC and PVC to a single number with the

center of area method. If that number is larger than or equal to 0.5, the incoming beat will be

defined as a PVC, otherwise it will be classified as a non-PVC.

3.3 Training and testing of the classifiers

The AAMI standard recommends methods for the training and testing practice as well as the

presentation of performance results. The test should report the performance of the algorithm to

new data and, therefore, the training and test set must be strictly separated from each other.

Different methods, such as cross validation, are used to evaluate classification performance in the

field of pattern recognition. However, following the AAMI recommended standards the first five
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minutes of each record are used for training purposes while the last 25 minutes are used for

testing in the MIT-BIH Database. Only the training set should be used to extract information on

rhythm analysis, morphology of beats, cluster plots, tuning the algorithm, etc.

Only 24 of the records include PVCs in the first five minutes. These records were considered

as the training set for the decision tree algorithm with 1080 PVCs and 8089 non-PVCs. Features

could not be derived for the first eight beats in the training sets and the last beat in the training

and test sets. The standard analysis software in the MIT-BIH Database includes these

considerations and was used to report the test results. The test set includes 5,900 PVCs and

77,394 non-PVCs.

4 Results

The number of nodes in the generated decision trees was varied to evaluate the relationship

between the complexity of the tree and the positive predictivity and sensitivity of the

classification process. Therefore, the split weight was varied between 0 and 5 to influence the

growth of the decision tree while min instances was bounded between 2 and 25 instances and the

pruning factor was fixed. Table 2 shows that a split weight of 0.2 achieved the most balanced

classification for the test set in terms of gross PVC sensitivity (85.29%) and positive predictivity

(85.23%) for all beats (average sensitivity = 80.47%; average positive predictivity = 58.00%).

The achieved sensitivity with the Fuzzy Logic classifier is 81.34% and the positive predictivity is

80.64% for all beats (average sensitivity = 74.58%; average positive predictivity = 66.54%).

Experiments using the fuzzy c-mean clustering algorithm for adjusting the membership functions

to the training set resulted in a worse performance.
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5 Discussion

The use of a filter bank allows for a computationally effective implementation of a time-

frequency analysis. The ratio of the energy in higher subbands to lower subbands was found to be

significantly lower for most PVCs compared to non-PVCs. This ratio and the width of a moving

window integrator of the energy around the peak are additional criteria for the separation of

PVCs from non-PVCs. Such features from a time-frequency analysis support the classification

process, but they cannot be extracted from the downsampled subbands. These features could

potentially be helpful for other analysis tasks in ECG monitoring; including the differentiation of

more heart beat types or rhythms such as ventricular fibrillation. In another study (AFONSO et al.,

1997), a similar approach showed promising results for distinguishing paced and non-paced

beats.

The decision tree algorithm used features related to the heart rate and morphology in the

highest levels of the tree. They appear to be the most efficient features in the differentiation

between PVCs and non-PVCs. The algorithm produced robust classification schemes, which

differed little for changes in the pruning and split weight parameters.

The decision tree classifier performed better than the fuzzy-rule-based classifier when

averaged over all beats. In addition, fine-tuning of the fuzzy logic system by changing

membership functions or adding rules turned out to be difficult due to the nonlinear behavior of

the classifier. However, the fuzzy-rule-based classifier is robust and only uses 9 features and 15

rules with a maximum of two fuzzy sets in each of the antecedents. The fuzzy logic system also

has a more balanced performance averaged over the 44 records (74.58% sensitivity and 66.54%

positive predictivity) than the reported decision tree classifier (80.47% sensitivity and 58%

positive predictivity).
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Records with atrial fibrillation and atrial premature beats, where the heart rate and R-R

intervals are irregular, increase the number of false and true negative classifications for both

classifiers. This is due to the fact that the classifiers emphasize the heart rate features, which are

good discriminators in the majority of the records. The results for the decision tree algorithm

improved significantly when trained and tested on a selected subset of the 44 records as done by

others (RAPPAPORT et al., 1982; SILIPO et al., 1995; HAM and HAN, 1996). However, the purpose

of the study was to evaluate the performance of the algorithms on a large number of different

records to identify the strengths of the classifiers as well as their limitations.

The most important factors in a classification process are the choice of features and their

normalization. More features and a feedback loop from the classifier to the process of

normalization of the features may result in more accurate classifications. Incorporation of the

information from additional leads of the ECG could also potentially increase the performance

significantly. A better lead could be analyzed in case of possible electrode problems (e.g. dead

segments in the signal) or near isoelectric amplitudes in one lead. Moody and Mark (1982) report

a 42% reduction in number of false negative classifications when analyzing features from two

ECG leads simultaneously instead of just one lead. The task for a multilead analysis is to resolve

discrepancies in case of contradictory results from the leads, e.g. when waveforms of PVCs

appear similar to non-PVCs in one lead while differences are acccentuated in a second lead.
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Table 1 Linguistic description of the fuzzy input sets and the parameters a, b, and c of their

generalized bell curve membership functions.

Feature Fuzzy input set Bell function parameters
a b c

norm-RR0 premature 0.29 5 0.5
on_time 0.115 1.5 1
delayed 0.8 8 2

RR1-to-RR0 short 0.7 5 0
regular 0.2 2 1
long 2.5 15 4

irregularity small 9 2 0
large 55 7 75

norm-amp small 0.7 10 1
average 0.2 2 1
enlarged 0.2 2.5 1.5

highly_enlarged 2.3 10 4
peakdirection identical 0.25 2.5 0

opposite 0.25 2.5 1
peakwidth normal 0.06 5 0

wide 0.9 50 1
norm-peak-to-peak small 0.6 5 0

average 0.25 2.5 1
enlarged 2.1 25 3.5

MWI-15 normal 0.22 6 0
wide 0.14 10 0.44

E0,1/E07 low 0.3 7 0
high 0.51 10 1
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Table 2 Results of the decision tree algorithm for varying split weights. The number of nodes,

leaves, and features chosen by the algorithm are included. Sensitivity (Se) and positive

predictivity (+P) for the training and test set are reported as gross statistics.

Training set Test set
Split weight Nodes (#) Leaves (#) Features (#) Se (%) +P (%) Se (%) +P (%)

0 131 66 14 98.97 97.87 86.08 80.32
0.1 125 63 14 98.97 97.87 86.17 79.67
0.2 119 60 14 98.96 97.04 85.29 85.23
0.3 121 61 13 98.77 97.04 82.76 84.35
0.4 121 61 14 98.68 96.76 85.80 83.84
0.5 105 53 13 98.48 96.02 85.31 84.33
0.6 105 53 14 98.29 95.65 83.51 86.00
0.7 117 49 13 98.02 96.30 84.03 84.96
0.8 85 43 13 97.15 94.81 82.19 85.57
0.9 79 40 14 96.93 93.70 80.85 84.53
1.0 47 24 10 94.11 93.24 81.54 82.98
1.1 29 15 10 92.78 92.78 83.15 82.41
5.0 29 15 10 92.78 92.78 83.15 82.41
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LIST OF FIGURE CAPTIONS

Fig. 1 Upsampled and interpolated outputs from the filter bank for record 116. The original

signal (top row) is split in 32 different subbands, where o0 (second row) represents a

low-pass filtered portion of the original signal. The mean of the preceding 360

samples is subtracted from o0 to compensate for the offset in the original signal.

Rows three and four show the ouputs o3 and o5 of the filter bank.

Fig 2 The decision tree created by MC4 for a split weight of 1.1. The tree has 29 nodes, 15

leaves, 7 levels and uses 10 features. The classification process starts at the root of

the tree. An incoming beat travels down the branches of the tree depending on the

result of the test on a feature. The procedure ends when the beat arrives at a leaf ‘P’

(PVC) or ‘N’  (non-PVC).

Fig 3 Block diagram for a Fuzzy Logic System for classification. Incoming data are

preprocessed and features are extracted before the fuzzification. The inference engine

combines the fuzzy sets and the implemented rules to a fuzzy output set. As a final

result, the defuzzifier transforms fuzzy output sets into crisp data (classes).
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Fig. 1 Upsampled and interpolated outputs from the filter bank for record 116. The original

signal (top row) is split in 32 different subbands, where o0 (second row) represents a

low-pass filtered portion of the original signal. The mean of the preceding 360

samples is subtracted from o0 to compensate for the offset in the original signal.

Rows three and four show the ouputs o3 and o5 of the filter bank.
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Fig 2 The decision tree for a split weight of 1.1. The tree has 29 nodes, 15 leaves, 7 levels

and uses 10 of the available 16 features. The classification process starts at the root

of the tree. An incoming beat travels down the branches of the tree depending on the

result of the test on a feature. The procedure ends when the beat arrives at a leaf ‘P’

(PVC) or ‘N’  (non-PVC).
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Fig 3 Block diagram for a Fuzzy Logic System for classification. Incoming data are

preprocessed and features are extracted before the fuzzification. The inference engine

combines the fuzzy sets and the implemented rules to a fuzzy output set. As a final

result, the defuzzifier transforms fuzzy output sets into crisp data (classes).


